Tuesday, 28 January 2025

Lecture Plan for DS Primer

Introduction

A structured 3-hour tutorial plan for **DeepSeek**, covering its introduction, effective usage across web, app, and API, and code samples for integrating with a local LLM like LLaMA 3.2.

---

## **3-Hour DeepSeek Tutorial Plan**

### **Hour 1: Introduction to DeepSeek**

1. **What is DeepSeek?** (15 minutes)

   - Overview of DeepSeek as a search and retrieval tool.

   - Key features: semantic search, context-aware retrieval, and integration with LLMs.

   - Use cases: research, content discovery, and data analysis.

2. **DeepSeek Architecture** (15 minutes)

   - Explanation of how DeepSeek works:

     - Indexing and retrieval pipelines.

     - Integration with LLMs for enhanced search.

   - Differences between web, app, and API usage.

3. **Setting Up DeepSeek** (30 minutes)

   - Creating an account and accessing the platform.

   - Installing the DeepSeek app (if applicable).

   - Generating API keys for programmatic access.

   - Setting up a local environment for API usage (Python, virtual environment, etc.).

---

### **Hour 2: Effective Usage of DeepSeek**

1. **Using DeepSeek Web Interface** (20 minutes)

   - Navigating the web interface.

   - Performing searches: basic vs. advanced queries.

   - Filtering and sorting results.

   - Saving and exporting search results.

2. **Using DeepSeek Mobile/Desktop App** (20 minutes)

   - Installing and configuring the app.

   - Syncing searches across devices.

   - Offline usage and caching.

   - Customizing search preferences.

3. **DeepSeek API Overview** (20 minutes)

   - Introduction to the DeepSeek API.

   - API endpoints: search, retrieve, and analyze.

   - Authentication and rate limits.

   - Example use cases for API integration.

---

### **Hour 3: DeepSeek API with Python and Local LLM Integration**

1. **Setting Up Python Environment** (15 minutes)

   - Installing required libraries: `requests`, `openai`, `transformers`, etc.

   - Configuring API keys and environment variables.

2. **Basic API Usage in Python** (20 minutes)

   - Making a simple search request.

   - Parsing and displaying results.

   - Example code:

     ```python

     import requests


     API_KEY = "your_deepseek_api_key"

     endpoint = "https://api.deepseek.com/v1/search"

     headers = {"Authorization": f"Bearer {API_KEY}"}

     params = {"query": "semantic search", "limit": 5}


     response = requests.get(endpoint, headers=headers, params=params)

     results = response.json()


     for result in results["data"]:

         print(result["title"], result["url"])

     ```


3. **Integrating DeepSeek with Local LLM (LLaMA 3.2)** (25 minutes)

   - Setting up LLaMA 3.2 locally using `transformers` or `llama.cpp`.

   - Combining DeepSeek search results with LLaMA for enhanced responses.

   - Example code:

     ```python

     from transformers import AutoModelForCausalLM, AutoTokenizer


     # Load LLaMA 3.2 model

     model_name = "llama-3.2"

     tokenizer = AutoTokenizer.from_pretrained(model_name)

     model = AutoModelForCausalLM.from_pretrained(model_name)


     # DeepSeek search results

     search_results = [

         "DeepSeek is a powerful semantic search tool.",

         "It integrates with LLMs for better context-aware retrieval."

     ]


     # Combine results and generate a summary using LLaMA

     input_text = "Summarize the following information: " + " ".join(search_results)

     inputs = tokenizer(input_text, return_tensors="pt")

     outputs = model.generate(**inputs, max_length=100)

     summary = tokenizer.decode(outputs[0], skip_special_tokens=True)


     print("Generated Summary:", summary)

     ```


4. **Advanced Prompt Engineering** (20 minutes)

   - Crafting effective prompts for DeepSeek and LLaMA.

   - Example prompts:

     - "Find recent research papers on AI ethics and summarize key points."

     - "Retrieve top 5 articles about climate change and generate a concise report."

   - Combining DeepSeek results with LLaMA for Q&A:

     ```python

     query = "What are the benefits of using DeepSeek with LLMs?"

     search_results = deepseek_search(query)

     input_text = f"Answer the following question based on the context: {query}\nContext: {search_results}"

     ```


5. **Q&A and Wrap-Up** (10 minutes)

   - Recap of key concepts.

   - Addressing common challenges and troubleshooting tips.

   - Resources for further learning.

---

### **Additional Resources**

- **DeepSeek Documentation**: [https://docs.deepseek.com](https://docs.deepseek.com)

- **LLaMA 3.2 GitHub Repository**: [https://github.com/facebookresearch/llama](https://github.com/facebookresearch/llama)

- **Python Requests Library**: [https://docs.python-requests.org](https://docs.python-requests.org)

- **Hugging Face Transformers**: [https://huggingface.co/docs/transformers](https://huggingface.co/docs/transformers)

---

This tutorial provides a comprehensive introduction to DeepSeek, practical usage scenarios, and hands-on coding examples for integrating with a local LLM like LLaMA 3.2. Let me know if you'd like to dive deeper into any specific section!

No comments:

Post a Comment

Hour 5 Prompts for 5 Multimodal Use cases

 Multimodal Use Cases and Examples of Prompt Engineering **Introduction** In the rapidly evolving world of artificial intelligence, multimod...